Skip to main content

Rekuperation beim Elektroauto – Wer bremst, fährt weiter


Über den Begriff der Rekuperation stolpern Sie auf jeden Fall, wenn Sie sich für ein Leasingfahrzeug als Elektroauto oder Hybridfahrzeug entscheiden. Rekuperation bedeutet Energierückgewinnung.

Sobald Sie den Fuß vom Gas nehmen, bremst das Auto zügig ab, ohne, dass Sie das Bremspedal berühren. Genau das ist die Rekuperation. Das Ganze ist vergleichbar mit der Funktion eines Dynamo am Fahrrad.

Der durch den Generator generierte und gespeicherte Strom dient zur Erhöhung der Reichweite. Wer also mittels Rekuperation bremst, der fährt anschließend weiter, da der erzeugte Strom später zum Beschleunigen des Elektroautos genutzt werden kann. Wenn Sie die Rekuperation stark einstellen, bei einigen Fahrzeugen kann die stärke nicht eingestellt werden, ist mitunter gar kein Bremsen über das Bremspedal notwendig. 

Rekuperation beim Elektroauto

Rekuperation beim Elektroauto

Energierückgewinnung durch Rekuperation

Regenerative Bremssysteme bieten die Möglichkeit, die Bremsenergie zu recyceln, die ansonsten als Wärme in den Bremsbelägen abgeleitet wird. Die Nutzung der Bremsenergie ist jedoch ein relativ neues Konzept im Automobilsektor, das noch weitere Forschung und Entwicklung erfordert. Aufgrund der Betriebsbeschränkungen der Antriebsstrang-Architektur und der variierenden Art der Bremsbedingungen ist es unwahrscheinlich, dass die gesamte gespeicherte kinetische Energie des Fahrzeugs während des Bremsens zurückgewonnen werden kann. Die Herausforderung bei der Verbesserung der kinetischen Energierückgewinnung liegt in den Bremsbedingungen, der Fähigkeit des elektrischen Antriebssystems zur Handhabung von Leistung/Drehmoment, dem Management der dualen Bremssysteme, den eingesetzten Energieumwandlungstechniken und der Energiespeicherkapazität.

In dieser Arbeit wird eine neuartige Bremsstrategie vorgestellt, um die Beteiligung des regenerativen Bremssystems zu erhöhen, um die kinetische Energierückgewinnung zu steigern und gleichzeitig die Anforderungen an die Bremsleistung zu erfüllen. Zunächst werden eine mathematische Modellierung und eine simulationsbasierte Analyse vorgestellt, um die Auswirkungen der Variation der Bremsleistung in Bezug auf die Bremsanforderungen aufzuzeigen. Es wird eine neuartige Bremsstrategie vorgeschlagen, um die kinetische Energierückgewinnung bei starken Bremsvorgängen zu erhöhen. Die Effektivität dieser Bremsstrategie wird mit Hilfe eines Simulationsmodells, das in der Matlab-Simulink-Umgebung entwickelt wurde, analysiert. Es wurde ein Versuchsaufbau entwickelt, um verschiedene Bremsszenarien und deren Auswirkungen auf die kinetische Energierückgewinnung zu testen. Am Ende werden Vorschläge gemacht, um diese Forschung in der Zukunft fortzusetzen.

Die elektromechanische Kupplung

Die elektromechanische Kupplung ist ein zwischengeschaltetes Übertragungssystem, das den Elektromotor mit der Antriebsachse verbindet. Eine ungeeignete Auslegung des Übertragungssystems führt zu erheblichen Effizienzverlusten. Daher werden verschiedene Arten von Getriebesystemen wie stufenlose Getriebe, Radnabengetriebe und Synergieantriebe für elektrische Antriebsanwendungen untersucht. Energiedichte, Leistungsdichte und nichtlineares Betriebsverhalten von Elektroenergiespeichern beeinflussen die Fahrdauer und Effizienz von Antriebssystemen erheblich.

Dies ist eines der aktivsten Forschungsgebiete im Bereich der elektrischen Antriebe sowie in verschiedenen anderen Bereichen wie Computer-Energiesysteme und Mobiltelefone. Aufgrund der hohen Energiedichte fossiler Brennstoffe ist es fast unmöglich, diese durch elektrische Energiespeicher in Elektrofahrzeugen zu ersetzen. Verschiedene Studien untersuchen andere mögliche Methoden zur Entwicklung von elektrischen Energiespeichern.

Der leistungselektronische Wandler

Der leistungselektronische Wandler ist ein weiteres Gerät, das den Elektromotor und den Energiespeicher verbindet, um die Menge und Richtung des Leistungsflusses zu steuern. Die Aufgabe des Leistungs- und Energiemanagements für mehrere Energiespeicher wird ebenfalls von Leistungswandlern übernommen. Sie wird erreicht, indem die Spannungsabweichung des Ausgangs in Bezug auf den Eingang entsprechend verändert wird. Es gibt eine Vielzahl von Leistungswandler-Topologien, die von vielen Forschern für verschiedene Anwendungen im Antriebsstrang untersucht wurden. Die Erhöhung des Wirkungsgrads, des Betriebsbereichs und der Leistung sind die primären Ziele dieses Forschungsbereichs. Die Einbeziehung mehrerer Systeme mit unterschiedlichen Betriebszielen erfordert ein Steuerungssystem. Die Aufgabe dieses Steuerungssystems ist es, alle Systeme zu überwachen und übergeordnete und individuelle Steuerungsmaßnahmen durchzuführen. Es werden verschiedene Regelungsansätze für Hybrid-Elektrofahrzeug-Anwendungen untersucht.

effektive Nutzung von regenerativen Bremssystemen

Die effektive Nutzung von regenerativen Bremssystemen ist eines der Hauptziele der Elektromobilitätsforschung. Die Rückgewinnung der gespeicherten kinetischen Energie des Fahrzeugs während des Bremsvorgangs ist das grundlegende Konzept hinter dem regenerativen Bremsen. Obwohl es trivial zu verstehen ist, gibt es verschiedene praktische Einschränkungen, die die Rückgewinnung der kinetischen Energie auf unterschiedliche Weise beschränken. Systembeschränkungen und das Fahrverhalten sind zwei Hauptpunkte, die wesentlich zur Bestimmung der Energierückgewinnungseffizienz beitragen. Die Energierückgewinnung ist ein attraktiver Ansatz, um die Fahrreichweite mit einem begrenzten Energiereservoir zu erhöhen. Die kinetische Energierückgewinnung des elektrischen Antriebssystems erhöht die Fahrreichweite um ca. 25 bis 30 %.

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

Im Allgemeinen erscheinen die Reichweite und die Kosten als die technologische und wirtschaftliche Begrenzung für elektrische und hybridelektrische Antriebssysteme, was sie daran hindert, auf dem Markt für konventionelle Fahrzeuge zu konkurrieren. Im Allgemeinen sind Antriebssysteme so konzipiert, dass sie die Anforderungen an das Beschleunigungsverhalten des Fahrzeugs erfüllen. Elektromotor, Batteriesystem, Stromrichtergerät und Getriebesystem werden in einem Fahrzeug so ausgelegt, dass sie die Anforderungen an Beschleunigung und Höchstgeschwindigkeit erfüllen.

Nur das Fahrverhalten bestimmt den Bremsleistungsbedarf. Daher kann ein Notbremsleistungsbedarf weit über dem Beschleunigungsleistungsbedarf liegen, der vom elektrischen Antriebssystem bewältigt werden kann. Unter diesen Umständen sollte die gespeicherte kinetische Energie eines Fahrzeugs innerhalb unterschiedlicher Zeitfenster in Bezug auf die Bremsanforderungen zurückgewonnen oder abgebaut werden. Aus diesem Grund kann nicht die gesamte Bremsleistung durch elektrische Antriebssysteme bereitgestellt werden. Obwohl der Einsatz eines ausreichend großen elektrischen Antriebssystems im Idealfall die gesamte kinetische Energie zurückgewinnt, wird durch die zusätzliche Masse und das Volumen des Fahrzeugs zusätzliche Energie für den Antrieb benötigt.

Die sich abzeichnenden Anforderungen an das duale Bremssystem für Elektrofahrzeuge und Hybrid-Elektrofahrzeuge sind wie folgt zusammengefasst:

  1. Die begrenzte Leistung des Elektromotors begrenzt das maximale Bremsmoment
  2. Aufgrund der unzureichenden Gegen-EMK ist die regenerative Bremsleistung bei niedrigen Geschwindigkeiten vernachlässigbar
  3. Die gespeicherte Energie im Energiespeicher hat einen direkten Einfluss auf die regenerative Bremsleistung. Daher kann sie nicht eingeschaltet werden, wenn der Energiespeicher voll aufgeladen ist.
  4. Die meisten Fahrzeuge haben entweder Vorder- oder Hinterradantrieb. Einige Bremsszenarien erfordern jedoch den Einsatz von Vorder- und Hinterradbremsen zusammen.
  5. Der Einfluss des Antiblockiersystems auf glatten Straßen führt zu einer Verringerung der regenerativen Bremsleistung. Aus diesen Gründen werden Elektrofahrzeuge mit einer doppelten Bremsung ausgestattet.

Obwohl diese Flexibilität eine große Bandbreite an Bremsanforderungen zulässt, müssen Dualbremssysteme angemessen koordiniert und verwaltet werden, um die Rückgewinnung der kinetischen Energie während der Ausführung der Bremsaufgaben zu maximieren. Daher spielt die Strategie des Leistungsmanagements beim Bremsen eine wichtige Rolle, um die kinetische Energierückgewinnung eines elektrischen Antriebssystems zu erhöhen. Zu diesem Zweck werden in der Literatur verschiedene Energiemanagement-Strategien untersucht, die im folgenden Abschnitt diskutiert werden.

Regenerative Bremsstrategie und Energiemanagement

Ein regenerativer Bremsalgorithmus wird parallele Hybrid-Elektrofahrzeuge vorgeschlagen. Das rückgekoppelte Wissen über das Batteriesystem, die Fahrzeuggeschwindigkeit und die Motoreigenschaften werden berücksichtigt, um diesen Algorithmus zu entwerfen. Probleme, die mit dem Gefühl des Bremspedals zusammenhängen, werden ebenfalls mit Hilfe eines Hubsimulators untersucht. Um die Leistung dieses kombinierten Bremsalgorithmus zu evaluieren, wird eine Hardware-in-Loop-Simulation unter Verwendung eines hybridelektrischen Fahrzeugsimulators und eines Matlab-Simulink-Modells durchgeführt.

Eine parametrische Analyse veranschaulicht die Kompromisse, die bei der Dimensionierung von Komponenten für kinetische Energierückgewinnungssysteme auftreten. Sechs verschiedene Antriebsstrangsysteme (mit der Kombination von unterschiedlich starken Elektromotoren und Batteriesystemen) werden für den Federal Urban Driving Cycle (FUDC) mit dem Advanced Vehiclesimulator (ADVISOR) simuliert. Aufgrund des Effekts der kinetischen Energierückgewinnung wird bei dieser Simulationsstudie eine Kraftstoffersparnis von 4 bis 19% erreicht. Dabei erreichte die niedrige Motor-Batterie-Kombination eine Kraftstoffersparnis von 4%, während die höhere Motor-Batterie-Kombination eine Kraftstoffersparnis von 19% erreichte. Diese Studie deutet darauf hin, dass der Einsatz eines Motor-Batterie-Systems mit höherer Leistung in einem Hybrid-Elektrofahrzeug wünschenswert ist, um die regenerative Bremseffizienz zu verbessern. Allerdings muss in dieser Studie auch der Kompromiss berücksichtigt werden, der mit einer Überdimensionierung des Motor-Batterie-Systems in Bezug auf die Massenzunahme einhergeht.

Daher muss eine große Anzahl von Fahrzyklen getestet werden, um die Effektivität des regenerativen Bremssystems zu überprüfen. Aufgrund der dynamischen Kraftübertragung von Fahrzeugen während des Bremsens muss ein erheblicher Anteil des Bremsmoments zwischen Vorder- und Hinterachse aufgeteilt werden. Dieses Verhältnis variiert mit den Verzögerungsraten des Fahrzeugs sowie den Straßenbedingungen. Eine ungeeignete Aufteilung des Drehmoments kann zu einem Verlust der Stabilität und der Lenkkontrolle führen. Dabei ist zu beachten, dass die meisten Fahrzeuge entweder einen Vorderrad- oder einen Hinterradantrieb haben. Nehmen wir zum Beispiel an, dass ein Fahrzeug mit Frontantrieb ein Bremsszenario durchläuft, bei dem die vorderen und hinteren Bremsen betätigt werden müssen, um ein sicheres Bremsen zu gewährleisten.

In solchen Situationen wird ein Teil der kinetischen Energie einfach in den Bremsscheiben der Hinterachse verpuffen, ungeachtet der Tatsache, dass die Bremsleistung allein durch das elektrische Bremssystem erbracht werden könnte. Aufgrund dieser praktischen Einschränkung wird die Flexibilität des regenerativen Bremssystems weiter verringert. Eine Strategie zur Abschätzung des Bremsmoments, um die Rückgewinnung der Bremsenergie während des Bremsens zu erhöhen, kann auch denkbar sein. Unter Verwendung der Fahrzeuggeschwindigkeit wird das regenerative Bremsmoment geschätzt und als Referenzmoment für die Bremssteuerung verwendet. Da konventionelle Fahrzeuge nur mit mechanischen Bremssystemen ausgestattet sind, besteht dieses Problem bei konventionellen Fahrzeugen nicht. Duale Bremssysteme in Hybrid-Elektrofahrzeugen erfordern jedoch ein hohes Maß an Beteiligung des Steuerungssystems. Ähnlich wie hier werden die bremsdynamischen Eigenschaften von hydromechanischen und regenerativen Bremssystemen untersucht.

Wie bereits beschrieben, begrenzt die Beteiligung des mechanischen Getriebesystems die Effizienz des Antriebssystems. Um dieses Problem zu vermeiden, wird die Machbarkeit der Entwicklung von In-Rad-Motoren für leichte Serien-Hybrid-Elektrofahrzeuge für städtische Fahranforderungen untersucht. Basierend auf den Standard-Fahrzyklen führte der Autor eine statistische Analyse durch, um durchschnittliche Verzögerungsraten zu erhalten. Das Ergebnis dieser Untersuchung deutet darauf hin, dass Hinterradantriebssysteme unter städtischen Fahrbedingungen eine angemessene Bremsleistung aufweisen. In dieser Analyse wurde eine maximale Verzögerungsrate von 0,35 g ermittelt. Im Gegensatz dazu wird hervorgehoben, dass einige Verzögerungsraten 0,8 bis 1 g erreichen können. Die Fahrgewohnheiten der Fahrer sind ein weiterer Faktor, der zu unterschiedlichen Verzögerungsraten führen kann, womit eine solche Untersuch schwer einzuschätzen ist.


Ähnliche Beiträge

Sicherheits- und Assistenzsysteme für Neuwagen ab Juli 2024

Pflichtausstattung von Neuwagen ab Juli 2024

Ab 07.Juli 2024 treten neue Vorschriften in Kraft, die für Neuwagen bestimmte Sicherheits- und Assistenzsysteme verpflichtend machen. Diese Maßnahmen sollen die Verkehrssicherheit erhöhen und Unfälle reduzieren. Im Folgenden finden Sie einen ausführlichen Ratgeber zu den neuen Anforderungen, die ab diesem Zeitpunkt gelten: 1. Vorrichtung für Wegfahrsperre mit Alkoholmessung Beschreibung: Neuwagen müssen eine Vorrüstung für eine Wegfahrsperre mit Alkoholmessung haben. Diese Vorrüstung ermöglicht eine spätere Aktivierung oder Nachrüstung des Systems. Funktion: Das System misst den Alkoholgehalt in der Atemluft des Fahrers und verhindert das Starten des Fahrzeugs, wenn ein bestimmter Promillewert überschritten wird. 2. Geschwindigkeitsmesser (Verkehrsschilderkennung) Beschreibung: Neuwagen müssen mit einem […]

weiterlesen
Sommerreifen: Wann und Warum Sie Wechseln Sollten

Sommerreifen: Wann und weshalb Sie wechseln sollten

Sommerreifen sind ein wesentlicher Bestandteil der Fahrzeugsicherheit und Leistung. Sie sind speziell für höhere Temperaturen und trockene Bedingungen konzipiert und bieten optimale Leistung in den wärmeren Monaten des Jahres. Aber wann ist der richtige Zeitpunkt, um sie zu wechseln? Und was unterscheidet sie von Winterreifen bei höheren Temperaturen? Lassen Sie uns diese Fragen klären. Wann sollten Sie auf Sommerreifen wechseln? Die Faustregel lautet: “Von O bis O” – von Ostern bis Oktober. Sobald die Temperaturen konstant über 7 Grad Celsius liegen, ist es an der Zeit, auf Sommerreifen umzusteigen. Dies liegt daran, dass Sommerreifen bei wärmeren Temperaturen eine bessere Leistung […]

weiterlesen
Sollten Sie den Motor Ihres Autos erst warm laufen lassen?

Sollten Sie den Motor Ihres Autos erst warm laufen lassen?

Es ist eine weit verbreitete Praxis, das Auto vor der Fahrt erst einmal “warm laufen” zu lassen. Aber ist das wirklich notwendig? Lassen Sie uns das genauer betrachten. Was bedeutet “Warm laufen lassen”? Wenn Sie Ihr Auto starten, beginnt der Motor im Leerlauf zu laufen. In diesem Zustand verbraucht der Motor nur eine minimale Menge an Kraftstoff und erzeugt nur eine geringe Menge an Leistung. Während dieser Zeit wird das Motoröl durch den Motor gepumpt und beginnt, sich zu erwärmen. Das Erwärmen des Öls ist ein wichtiger Teil des Prozesses. Kaltes Öl ist zähflüssiger und fließt nicht so gut wie […]

weiterlesen
Insekten und Autofahren - eine unerwartete Begegnung

Insekten und Autofahren – eine unerwartete Begegnung

Insekten sind ein faszinierender Teil unserer Natur. Sie sind klein, vielfältig und spielen eine wichtige Rolle in unserem Ökosystem. Aber was passiert, wenn diese kleinen Kreaturen auf die Welt des Autofahrens treffen? Stellen Sie sich vor, Sie fahren auf einer Landstraße, die Sonne scheint, und plötzlich hören Sie ein leises “Plopp” auf der Windschutzscheibe. Ein Insekt hat den Weg Ihres Autos gekreuzt und ist nun auf Ihrer Windschutzscheibe gelandet. Für viele Autofahrer ist dies eine alltägliche Erfahrung, besonders während der warmen Sommermonate. Es gibt mehrere Gründe, warum Sie Insekten von Ihrem Auto zeitnah entfernen sollten Sichtbarkeit: Insekten auf der Windschutzscheibe […]

weiterlesen
Chiptuning bei Autos: Ein Turbo-Boost für Ihre Fahrt

Chiptuning bei Autos: Ein Turbo-Boost für Ihre Fahrt

Chiptuning ist eine Methode, die in der Automobilindustrie verwendet wird, um die Leistung eines Fahrzeugs zu steigern. Es beinhaltet die Modifikation oder das “Tuning” des Motorsteuergeräts (ECU) eines Fahrzeugs, um seine Leistung zu verbessern. Was ist Chiptuning? Die ECU ist das “Gehirn” des Fahrzeugs und steuert eine Vielzahl von Systemen, einschließlich des Motors, der Getriebe und der Abgasanlage. Die Software in der ECU enthält Parameter, die verschiedene Aspekte der Fahrzeugleistung steuern, wie z.B. die Menge an Kraftstoff, die in den Motor eingespritzt wird, den Zeitpunkt der Zündung und den Ladedruck des Turboladers. Durch das Ändern dieser Parameter kann die Leistung […]

weiterlesen
ISA-System: Intelligente Geschwindigkeitsassistenz - Was genau ist das?

ISA-System: Intelligente Geschwindigkeitsassistenz – Was genau ist das?

Das ISA-System ist eine beeindruckende technologische Innovation, die das Potenzial hat, die Art und Weise, wie wir Auto fahren, grundlegend zu verändern. Durch die Verbesserung der Straßensicherheit und die Verringerung des Kraftstoffverbrauchs könnte dieses System einen bedeutenden Beitrag zur Schaffung einer nachhaltigeren und sichereren Verkehrsumgebung leisten. Es bleibt abzuwarten, wie sich diese Technologie in den kommenden Jahren weiterentwickeln und verbessern wird. Was genau ist ein automatischer Geschwindigkeitsassistent? Ein automatischer Geschwindigkeitsassistent, auch bekannt als Geschwindigkeitsregelanlage oder Tempomat, ist ein System in einem Fahrzeug, das automatisch die Geschwindigkeit des Fahrzeugs auf einem vom Fahrer eingestellten Wert hält. Das System funktioniert durch die […]

weiterlesen

Keine Kommentare vorhanden



Sie können uns hier gerne einen Kommentar hinterlassen.

Ihre E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind markiert *